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Previous studies have found that children have difficulty solving proportional reasoning problems
involving discrete units until 10 to 12 years of age, but can solve parallel problems involving continuous
quantities by 6 years of age. The present studies examine where children go wrong in processing
proportions that involve discrete quantities. A computerized proportional equivalence choice task was
administered to kindergartners through 4th-graders in Study 1, and to 1st- and 3rd-graders in Study 2.
Both studies involved 4 between-subjects conditions that were formed by pairing continuous and discrete
target proportions with continuous and discrete choice alternatives. In Study 1, target and choice
alternatives were presented simultaneously; in Study 2, target and choice alternatives were presented
sequentially. In both studies, children performed significantly worse when both the target and choice
alternatives were represented with discrete quantities than when either or both of the proportions involved
continuous quantities. Taken together, these findings indicate that children go astray on proportional
reasoning problems involving discrete units only when a numerical match is possible, suggesting that
their difficulty is due to an overextension of numerical equivalence concepts to proportional equivalence
problems.
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itive and explicit processing

Proportional reasoning involves understanding the multiplica-
tive relationships between rational quantities (a/b � c/d); it is a
form of reasoning that characterizes important structural relation-
ships in mathematics and science, as well as in everyday life
(Cramer & Post, 1993; Lesh, Post, & Behr, 1988). As Ahl, Moore,
and Dixon (1992) emphasized, “Proportional reasoning is a per-
vasive activity that transcends topical barriers in adult life” (p. 81).
Proportional information is crucial in dealing with such diverse
topics as economic values, relational spatial contrasts, tempera-
tures, densities, concentrations, velocities, chemical compositions,
demographic information, and recipe formulation (Karplus, Pulos,
& Stage, 1983; Moore, Dixon, & Haines, 1991; Siegler & Vago,
1978; Sophian & Wood, 1997; Spinillo & Bryant, 1999). For
example, when baking, one needs to think proportionally about the
relative measures of each ingredient (e.g., 21⁄2 cups flour, 3⁄4 cup
sugar, and 1⁄4 cup butter) and must maintain these proportions
whenever deviating from the recipe (e.g., whenever doubling or

halving the intended amount). In chemistry, proportionality is
central to balancing chemical equations. During election years,
candidates strategically allocate their campaign time to particular
geographical locations on the basis of the proportion of the pop-
ulation represented by specific demographic target groups. Under-
standing of proportionality is also central to mathematics; it is the
basis of rational number operations, unit partitioning, and basic
algebra and geometry problem solving (Empson, 1999; Fuson &
Abrahamson, 2005; Hasemann, 1981; Pitkethly & Hunting, 1996;
Saxe, Gearhart, & Seltzer, 1999; Sophian, Garyantes, & Chang,
1997). In fact, this kind of reasoning is viewed as so central to
mathematical thinking that the National Council of Teachers of
Mathematics (1989) stated that it deserves “whatever time and
effort must be expended to assure its careful development” (cited
in Cramer & Post, 1993, p. 404).

Despite the importance and pervasiveness of proportional rea-
soning, there is disagreement regarding its developmental time
course. One theoretical perspective, originally presented by Piaget
and Inhelder (1951/1975; Inhelder & Piaget, 1958), proposes that
children are incapable of proportional reasoning until about 11
years of age. According to Piagetian theory, proportional reason-
ing involves understanding the “relation between relations,” and is
a hallmark of formal operations. Piaget and Inhelder’s work, as
well as many subsequent studies, support this idea (Fujimura,
2001; Schwartz & Moore, 1998). For example, Noelting (1980)
presented 6- to 16-year-old children with two proportions, each
represented as a set of glasses of orange juice concentrate and a set
of glasses of water; participants were asked to choose which
proportion would produce a more concentrated orange drink (e.g.,
three glasses of orange juice to one glass of water vs. one glass of
orange juice to three glasses of water). Consistent with Piaget and
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Inhelder’s perspective, children under 12 years of age failed to
select the correct set.

Other studies have shown that 5- to 8-year-olds are unable to
reliably predict the outcomes of chance gambles, where outcome
probabilities are determined by proportions (e.g., lottery draws and
spinner gambles; Brainerd, 1981; Chapman, 1975; Davies, 1965;
Falk & Wilkening, 1998). Children’s difficulty with proportional
reasoning in the context of conventional fractions is also noted in
the mathematics education literature (Carpenter, Fennema, &
Romberg, 1993; Pitkethly & Hunting, 1996). For example, Ball
(1993) reported that third-grade children systematically misinter-
pret traditionally notated fractions (e.g., 3⁄4) and estimate that
fractions with larger denominators are quantitatively greater than
fractions with smaller denominators (e.g., 4/6 � 4/8).

In contrast to studies indicating that proportional reasoning is a
late achievement, some studies report that children as young as 5
to 6 years of age can successfully solve slightly modified propor-
tional reasoning problems (Ginsburg & Rapoport, 1967; Sophian,
2000; Sophian & Wood, 1997; Van Den Brink & Streefland,
1979). One problem modification that has been used to this end has
involved framing the proportional equivalence problems in terms
of analogy (Farrington-Flint, Canobi, Wood, & Faulkner, 2007).
Children become capable of solving simple analogy problems
during the preschool years (e.g., Gentner, 1977a, 1977b), and
researchers have noted that proportional reasoning is a quantitative
form of analogical reasoning, in the sense that both conceptual
analogies and quantitative proportions require analysis of the re-
lations between relations. For example, understanding that the
relation between hands and gloves is analogous to the relation
between feet and shoes may involve similar reasoning processes as
understanding that the relation between 4/5 is analogous to 8/10.
Working within this framework, Goswami and colleagues (Gos-
wami, 1989, 1995; Singer-Freeman & Goswami, 2001) designed
problems to assess young children’s proportional reasoning skills
in the context of shape analogies. Their findings show that 6- and
7-year-olds understand, for example, that a half-circle and half-
rectangle pair is analogous to a quarter-circle and quarter-rectangle
pair (Goswami, 1989). Of course, proportions, like other analogies,
vary in difficulty depending on the specific terms involved, and
Goswami (1989) presented children with quarter-base problems
(e.g., 1⁄4, 1⁄2, and 3⁄4), which likely made them easier than other
alternatives (e.g., 2/3 and 6/9).

Five- to 6-year-olds also have success on proportional reasoning
problems that take the form of probabilistic gambles if a modified
response mechanism is used. In these studies, participants are
asked to provide a scaled judgment of their satisfaction with a
gamble rather than to predict the outcome of the gamble
(Acredolo, O’Connor, Banks, & Horobin, 1989; Schlottmann,
2001). It has been suggested that this type of response may enable
young children to use intuitive problem solving strategies that are
more likely to be correct than more explicit strategies (Boyer,
2007; Falk & Wilkening, 1998; Reyna & Brainerd, 1994; Schlott-
mann, 2001).

The discrepancy in results between studies showing early versus
later success on proportional reasoning problems seems to be
explainable by a common thread. In particular, many studies that
report later understanding of proportionality tend to present par-
ticipants with proportions consisting of discrete sets, whereas
many studies that report earlier understanding of proportionality

tend to present participants with proportions consisting of contin-
uous amounts (Mix, Huttenlocher, & Levine, 2002). A few studies
have directly examined the impact of discrete versus continuous
quantities on proportional reasoning. Spinillo and Bryant (1999),
for instance, found that 6-year-olds were more successful in solv-
ing a proportional matching task when the stimuli were continuous
than when they were discrete (i.e., accuracy was higher when
target proportions, which were represented as small round pies,
were not sliced into discrete units). Similarly, Jeong, Levine, and
Huttenlocher (2007) found that 6-, 8-, and 10-year-olds performed
significantly above chance in selecting which of two spinner
gambles involved a higher probability for success if the winning
and losing proportions on each spinner were represented with
continuous sections. None of these age groups, however, selected
the more probable spinner if the winning and losing portions were
broken into discrete units by demarcating lines. It is possible that
proportions represented with continuous amounts are more likely
to elicit correct intuitive processes than proportions represented
with discrete sets. The question then becomes: What are the
explicit processes elicited by discrete quantities that interfere with
successful proportional reasoning?

Children’s difficulty with discrete unit proportional reasoning
problems may be due to overextension of counting routines to
judgments of proportionality (Mix, Levine, & Huttenlocher, 1999;
Wynn, 1997). In support of this possibility, Jeong et al. (2007)
found that even 10-year-olds had particular difficulty on propor-
tional reasoning problems if counting the number of discrete target
units produced an outcome inconsistent with the relative propor-
tion of target and nontarget units (e.g., they judged 6/10 as more
probable than 4/6). Thus, counting and the overextension of nu-
merical counts to proportional problems may impede proportional
reasoning. It is also possible that the presence of discrete units
interferes with forming a representation of the relative proportion
of numerator to denominator amounts, even if children do not try
to solve the problem by counting the numerator and denominator
units.

In the current studies, participants were given a task that in-
volved selecting a proportion that matched a target juice mixture.
Similar to previous studies (Fujimura, 2001; Noelting, 1980;
Schwartz & Moore, 1998), proportionality was determined by the
relative quantities of juice and water parts. The present task,
however, focuses on proportional equivalence between a target and
a choice alternative rather than concentration ordinality, which
may serve to reduce task difficulty (Cooper, 1984; Frydman &
Bryant, 1988; Mix et al., 2002).

Participants were randomly assigned to one of four continuity
conditions, which involved variation in whether the target and
choice alternatives were represented with continuous water and
juice amounts or with discrete water and juice units. In one
condition, both the target proportion and choice alternative pro-
portions were represented with discrete units (hereafter referred to
as DD); in another condition, both the target and choice alterna-
tives were represented with continuous amounts (CC); for a third
group, the target was represented with discrete units and the choice
alternatives with continuous amounts (DC); finally, for a fourth
group the target was represented with continuous amounts and the
choice alternatives were represented with discrete units (CD). On
the basis of previous findings, we predicted that children would
perform relatively well on the continuous target– continuous
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choice alternatives (CC) problems, and relatively poorly on the
discrete–discrete (DD) problems. Children’s performance on the
mixed conditions, which involved continuous target proportions
and discrete choice alternatives (CD), or the reverse (DC), were
included to provide information about the nature of children’s
difficulty. The hypothesis that children’s tendency to make numer-
ical matches interferes with their proportional reasoning would
gain support if their difficulty is isolated to the DD condition,
where both target and choice proportions are represented with
discrete units (i.e., DD � DC � CD � CC), because the DD
condition is the only one in which absolute numerical matches are
possible. Alternatively, if the presence of discrete units causes
difficulty with forming a proportional representation, we might
expect children to perform poorly any time discrete units are
present in the problem, and the CC condition will be the only
condition in which they perform well (DD � DC � CD � CC). It
is also possible that there will be an incremental effect, such that
participants given discrete targets with continuous choice alterna-
tives or the reverse will succeed at a rate that lies between those in
the DD and CC conditions (i.e., DD � DC � CD � CC). This
might be the case because participants given either discrete targets
or discrete choice alternatives (i.e., DC and CD) are presented with
fewer total countable units than those given discrete targets and
discrete choice alternatives (i.e., DD).

Another conclusion of previous studies that have examined the
development of proportional reasoning is that young children are
not able to go beyond the parts of the proportion to represent
part–whole relations (Inhelder & Piaget, 1958; Singer & Resnick,
1992). To examine this issue, we manipulated foil type to analyze
the role of parts and wholes in children’s proportional reasoning.
Across trials, the correct choice alternative was a proportional
match for the target mixture—that is, the juice/(juice � water)
proportion is preserved. For half of the trials, the incorrect foil
alternative matched the target’s absolute juice portion (i.e., a juice
part foil type), and for the other half of trials, the foil matched the
target’s total amount (i.e., a juice � water whole foil type). This
was the case in each continuity condition. If younger participants
do indeed focus on the parts that compose proportions, we might
expect an effect of foil type such that younger children perform
more poorly on trials on which the foil matches the target’s juice
portion (i.e., they are drawn toward forming a part match) than on
trials for which the foil matches the target’s whole juice � water
amount.

Study 1

Method

Participants. Participants were 240 students recruited from
seven Chicago public schools, with 48 participants from kinder-
garten and the first, second, third, and fourth grades; approxi-
mately the same number of girls and boys were tested at each
grade level (MK � 6 years 1 month, 27 girls, 21 boys; M1 � 7
years 1 month, 23 girls, 25 boys; M2 � 8 years, 0 months, 20 girls,
28 boys; M3 � 8 years 10 months, 23 girls, 25 boys; M4 � 9 years
10 months, 28 girls, 20 boys; SD � 4 months in all grades). There
were 12 participants per grade per continuity condition. All chil-
dren had written parental consent to participate. We did not ex-
pressly collect information on each participating child’s ethnicity

or socioeconomic status (SES); therefore, precise data for these
factors are not available. There was, however, substantial diversity
within and across the schools sampled, which we can examine at
the school level. On the basis of the statistics reported for each
school and the number of children tested at each, we estimate that
approximately 26% of participants were Hispanic, 26% were
Asian, 17% were Black, and 31% were White. Using the percent-
age of students at each school who were eligible for the free or
reduced-cost lunch program as a metric of SES, we estimate that
about 66% of the children in our sample came from low SES
backgrounds (SD � 27%, range � 26% to 96%).1 All participants
were fluent English speakers.

Procedure. Participating children were individually adminis-
tered an engaging proportional reasoning task on an IBM T20
laptop computer with a 14.1-in. (35.8-cm) screen. Testing was
carried out during regular school hours in familiar rooms adjacent
to participants’ classrooms. During task instructions, a picture of a
teddy bear appeared on the screen and children were told that his
name was Wally-bear. The experimenter explained that Wally-
bear enjoyed drinking all kinds of juice—red, blue, green, yellow,
and purple juice—and liked to mix his juice himself. The exper-
imenter then showed participants an example that stressed the
importance of maintaining a recipe’s proportion when transform-
ing the total amount. (See Appendix for the instruction script.)

During each trial, a small photo of the character appeared on the
upper left side of the screen, and a mixture of juice � water (target
proportion) was shown just below the photo. Two potential
matches for the target proportion appeared on the right two thirds
of the screen; one of them was a correct proportional match, and
the other was a part foil or a whole foil (as described above). The
bottoms of the choice alternatives were vertically aligned with
each other but were not aligned with the target proportion (see
Figure 1 for example screen shots of the experiment). With the
target and choice proportions on the screen, the experimenter
asked, “Which of these two [pointing to the two alternatives] is the
right mix for the juice Wally-bear is trying to make? Which of
these two would taste like Wally-bear’s juice?” Using the com-
puter mouse, the participant registered a selection by clicking a
button that appeared below each of the choice alternatives. After
the child selected, another target proportion and another two
choice alternatives appeared. The juice color on each successive
trial was different from that on the previous trial. Sixteen self-
paced trials were administered in this manner, in one of four
predetermined orders (i.e., two pseudorandom orders and their
reverse orders were used). No performance feedback was provided
on any trial.

Experimental design. Participants were randomly assigned to
one of four continuity conditions (CC, CD, DC, and DD, as
described above). The sole difference between the continuity con-
ditions was in how the juice and water parts were represented. In
the discrete conditions there were lines that demarcated each
1-cm2 unit, and in the continuous conditions the juice and water

1 Information regarding the National School Lunch Program, including
income eligibility requirements, is available through the U.S. Department
of Agriculture, Food and Nutrition Service (http://www.fns.usda.gov/cnd/
Lunch/). The school lunch program statistics for the present sample were
calculated based on data for the 2006–2007 school year.
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portions formed unitary columns, with visible divisions only oc-
curring at the point where the juice and water parts met (Figure 1
gives example screen shots of each continuity condition). As
mentioned above, for each continuity condition, foil type was
varied to match the target’s juice part on half of the trials and the
target’s whole extent (e.g., total juice � water quantity) on the
other half of the trials (the incorrect alternative in each frame of
Figure 1 is a juice part foil).

Several other factors were controlled. The target to match scal-
ing direction was balanced across part and whole foil trials. That
is, there were equal numbers of problems that involved scaling up
from a target proportion with a smaller numerator/denominator to
a proportional match with a larger numerator/denominator (e.g.,
2/3 to 6/9) and scaling down from a larger numerator/denominator
to a smaller numerator/denominator (e.g., 6/9 to 2/3). In addition,
foils were chosen such that the proportional disparity between the
target and foil were approximately equivalent across problems (see
Table 1). Previous studies have shown that half is an especially
salient proportion (Jeong, 2005; Spinillo & Bryant, 1991, 1999), so
neither the target nor either of the choice alternatives was ever one
half. Furthermore, all foils were on the opposite side of the half
boundary from the target (i.e., if the target proportion was less than
one half, then the foil proportion was greater than one half, or vice
versa), which should make the problems easier than if we had
included foils on the same side of the half boundary as the target
proportion. Other factors were varied randomly, as determined by
the computer program (i.e., the juice color assigned to a particular
trial and whether the correct choice appeared on the right or left).

Results

Collapsing across all variables, participants selected the propor-
tional match for the target on 63.2% of all trials. Table 2 summa-

rizes the mean proportion of trials per school grade, continuity
condition, and foil type on which participants selected the propor-
tional match. The primary analysis was a 4 � 5 � 2 � 2 mixed
model analysis of variance (ANOVA). Continuity condition
(CC, CD, DC, or DD), school grade (kindergarten, first grade,
second grade, third grade, or fourth grade), and sex were
between-subjects factors, and foil type (part foil or whole foil)
was a within-subjects variable. The dependent measure was the
number of times participants selected the proportional match
(out of eight trials for each foil type).

The ANOVA revealed a significant main effect of continuity
condition, F(3, 200) � 12.88, p � .0001, �p

2 � .16. Planned
pairwise comparisons revealed that participants in the DD condi-
tion were significantly less likely to select the proportional match
than participants in all other groups (all ps � .001) and that there
were no significant differences between the performance levels of
participants in the other three continuity conditions (all ps � .18).2

Follow-up comparisons against chance revealed that performance
levels of participants in the CC, CD, and DC conditions all
exceeded chance (all ps � .001), but the performance level of
participants in the DD condition did not ( p � .68).

The main effect of school grade was also significant, F(4,
200) � 14.49, p � .001, �p

2 � .23. Planned comparisons showed
that fourth-graders were more likely to select the proportional
match than all other groups (all ps � .001). Third-graders and
second-graders did not significantly differ from each other ( p �
.58), but both were more likely to select the proportional match
than first-graders and kindergartners (all ps � .01), who in turn did
not significantly differ from each other ( p � .74). On average,

2 All pairwise comparisons reported throughout the text were conducted
with one-tailed tests.

Continuous
Target

Discrete
Target

Continuous
Choice Alternatives 

Discrete
Choice Alternatives 

Figure 1. Example screenshots from each of the four between-subjects continuity conditions formed through
2 � 2 combination of Continuous Targets versus Discrete Targets � Continuous Choice Alternatives versus
Discrete Choice Alternatives.
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second-, third-, and fourth-graders selected the proportional match
more frequently than would be expected by chance, all t(47) �
4.30, all p � .001, but kindergartners and first-graders did not
significantly differ from chance performance (both ts � 1.00, both
ps � .32). Across grades, performance was poorest in the DD
condition, and the interaction between school grade and continuity
condition was not significant, F(12, 200) � 0.51, p � .91, �p

2 �
.03. The main effect of sex was nonsignificant, F(1, 200) � 0.01,
p � .91, �p

2 � .01, and no interactions involving this variable
reached statistical significance (all ps � .08).

Finally, the ANOVA revealed a significant main effect of foil
type, F(1, 200) � 43.42, p � .001, �p

2 � .18, with participants
selecting the proportional match more often when the foil was a
whole match (juice � water total) than when the foil matched the
target’s juice part (68.2% vs. 57.4% of trials, respectively). As
illustrated in Figure 2, however, foil type interacted with school
grade, F(4, 200) � 4.24, p � .003, �p

2 � .08, such that the
difference between whole and part foils decreased with develop-
ment. Figure 2 also shows that selection of the proportional match
when the foil matched the target’s juice part did not exceed chance
until third grade, whereas it exceeded chance by kindergarten
when the foil matched the target’s total juice � water amount
(with a Bonferroni control for multiple comparisons).

Individual analyses were conducted to examine whether partic-
ipants tended to consistently select the proportional match or the
foil alternative and if so, whether this shifted over development.
The binomial distribution indicates that to exceed chance (� � .05,
two-tailed) a participant must select a particular choice alternative
on at least 13 of the 16 trials. As can be seen in Table 3, the results
of the individual analysis largely mirrored the group findings;
generally, there was an increase in the number of participants who
consistently selected the proportional match with age, and more

participants in the CC, CD, and DC conditions (62 children,
34.4%) consistently selected the proportional match across grades
than in the DD condition (8 children, 13%). Although relatively
few children selected the foil alternative more frequently than
chance, more participants in the DD condition (7 children, 12%)
did so than in the three other conditions (1 child, 1%).

The amount of time that participants took to complete each trial
was also analyzed. On average, participants responded in 8.8 s per
trial (SD � 5.2). It is important to note that the time taken to
complete the task was negatively correlated with accuracy (r �
�.214, p � .001), indicating that there was not a speed–accuracy
trade-off; rather, those who responded more quickly also tended to
respond more accurately. A 4 � 5 � 2 � 2 ANOVA carried out
to analyze the effects of condition, school grade, sex, and foil type
on median response time revealed a main effect for continuity
condition, F(3, 200) � 5.08, p � .002, �p

2 � .07; participants in the
DD condition took longer to respond than those in all other
conditions (all ps � .02, Sidak adjusted), which did not signifi-
cantly differ from each other. The analysis also revealed a main
effect of grade, F(4, 200) � 2.97, p � .02, �p

2 � .06, with
second-graders responding faster than kindergartners and first-
graders ( p � .03 and p � .05, respectively, Sidak adjusted), but
with no other significant pairwise differences (all p � .17). These
findings largely mirror those found in our analyses on accuracy:
Participants in the DD condition and the youngest participants
were slower to respond as well as less accurate. Neither the main
effect of sex or foil type was significant, F(1, 200) � 0.03, p �
.87, �p

2 � .01 and F(1, 200) � 3.04, p � .08, �p
2 � .02, respec-

tively. The ANOVA, however, revealed an unexpected Foil
Type � School Grade interaction, F(4, 200) � 2.96, p � .02,
�p

2 � .06, reflecting faster responding of first-graders when the foil
matched the target’s juice part than when it matched the target’s

Table 1
Proportions That Were Used Across the 16 Experimental Trials

Trial Target Match Foil Proportional disparity

Part foils
1 4/10 2/5 4/5 .40
2 2/8 1/4 2/3 .42
3 3/9 1/3 3/4 .42
4 4/12 3/9 4/6 .33
5 2/6 3/9 2/3 .33
6 4/6 6/9 4/12 .33
7 2/3 6/9 2/6 .33
8 4/5 8/10 4/10 .40

Whole foils
9 1/5 2/10 3/5 .40

10 1/3 2/6 2/3 .33
11 2/6 3/9 4/6 .33
12 4/6 6/9 2/6 .33
13 8/12 2/3 4/12 .33
14 9/12 3/4 4/12 .42
15 8/12 6/9 3/12 .42
16 6/10 3/5 2/10 .40

Note. The fractions displayed represent juice units/(juice � water units).
“Part” foils always matched the target proportion’s juice units or amount,
and “whole” foils always matched the target proportion’s total (juice �
water) units or amount. Proportional disparity is the absolute value of the
difference between the target proportion and foil choice alternative pro-
portion.

Table 2
Study 1: Mean Proportion of Trials on Which Participants
Selected the Proportional Match, by Continuity Condition,
Grade, and Foil Type

School grade

Continuity condition

CC CD DC DD Total

Kindergarten
Whole foils .67 .61 .67 .48 .61
Part foils .57 .39 .51 .33 .45

First grade
Whole foils .68 .60 .63 .55 .61
Part foils .53 .46 .44 .23 .41

Second grade
Whole foils .69 .66 .81 .61 .69
Part foils .57 .59 .71 .43 .58

Third grade
Whole foils .77 .69 .77 .50 .68
Part foils .73 .72 .66 .43 .63

Fourth grade
Whole foils .84 .91 .84 .66 .81
Part foils .84 .81 .89 .66 .80
Total .69 .64 .69 .49 .63

Note. CC � continuous target–continuous choice; CD � continuous
target–discrete choice; DC � discrete target–continuous choice; DD �
discrete target–discrete choice.
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juice � water whole ( p � .014, Sidak adjusted). In addition, an
unexpected three-way Foil Type � School Grade � Sex interac-
tion emerged, F(4, 200) � 2.42, p � .05, �p

2 � .05 Although
difficult to interpret, pairwise comparisons indicate that this was
due to kindergarten boys, first-grade girls, and third-grade girls
responding faster on part foil trials than on whole foil trials (all
ps � .02, Sidak adjusted).

Discussion

The current study shows that children have difficulty solving
proportional reasoning problems when both the target and the

choice proportions are represented with discrete units, but they
perform significantly better on problems for which the target, the
choice alternatives, or both are represented with continuous
amounts. That is, performance of participants in the DC and CD
conditions did not differ from those in the CC condition, and each
of these groups performed above chance and better than those in
the DD condition. This pattern of results suggests that proportional
reasoning is not limited by the mere presence of discrete, countable
entities. Rather, the findings suggest that children’s difficulty with
proportional reasoning problems involving discrete quantities
stems from an overextension of absolute numerical equivalence

0

0.5

1

K 1st 2nd 3rd 4th

School Grade

Pr
op

or
tio

n 
C

or
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Whole foil trials Part foil trials

*** **
** **

** **

Figure 2. Study 1: Mean proportion correct for School Grade � Foil Type. Error bars represent the standard
error of the mean. For comparisons against chance, � indicates p � .005; �� indicates p � .001.

Table 3
Study 1: Number (Proportion) of Participants Who Chose the Proportional Match or the Foil
More Frequently Than Chance, by Grade and Continuity Condition

Match, by grade

Continuity condition

CC CD DC DD Total

Proportional
Kindergarten 2 (.17) 1 (.08) 2 (.17) 5 (.10)
First 2 (.17) 1 (.08) 2 (.17) 1 (.08) 6 (.13)
Second 3 (.25) 3 (.25) 6 (.50) 1 (.08) 13 (.27)
Third 6 (.50) 6 (.50) 4 (.33) 1 (.08) 17 (.35)
Fourth 8 (.67) 8 (.67) 8 (.67) 5 (.42) 29 (.60)

Total 21 (.35) 19 (.32) 22 (.37) 8 (.13) 70 (.29)
Numeric

Kindergarten 3 (.25) 3 (.06)
First 1 (.08) 1 (.08) 2 (.04)
Second 0 (.00)
Third 2 (.17) 2 (.04)
Fourth 1 (.08) 1 (.02)

Total 0 (.00) 1 (.02) 0 (.00) 7 (.12) 8 (.03)

Note. The significant difference criterion was selecting either alternative on 13/16 trials (� � .05, two-tailed).
CC � continuous target–continuous choice; CD � continuous target–discrete choice; DC � discrete target–
continuous choice; DD � discrete target–discrete choice.
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strategies to problems that should be solved on the basis of
proportional equivalence. Absolute numerical equivalence match-
ing (i.e., matching the target with the foil alternative, which has
the same number of units as the target juice part or the target
juice � water whole) was only possible when both the target
and choice alternatives were represented with discrete units, as
in our DD condition (i.e., numerical matching was not possible
in the conditions where the target, the choice alternatives, or
both were continuous). The difficulty young children have in
making proportional matches on DD problems is particularly strik-
ing in view of the fact that all foils were on the opposite side of the
half boundary from the target proportion, so that using an approx-
imate representation of proportion (i.e., more than half, less than
half) rather than matching target and foil counts would have led to
the correct answer.

As predicted, performance also suffered when the foil matched
the target’s juice part, relative to when the foil matched the target’s
juice � water whole, suggesting that a common absolute juice part
between the target and foil is a particularly salient similarity
feature. As evidenced by an interaction between foil type and
school grade, this was especially the case for younger children.
Kindergarten and first-grade students actually performed below
chance in choosing the proportional match when the foil matched
the target’s juice part (see Figure 2). As summarized in Table 2,
kindergartners and first-graders in the DD continuity condition
selected the proportional match on only 33% and 23% of the trials
when the foil alternative matched the target’s juice part, compared
to 48% and 55% of trials when the foil alternative matched the
target’s whole (juice � water). This is generally consistent with
the previous finding that younger children tend to focus on the
parts of the problem, rather than analyzing part–whole relations
(Inhelder & Piaget, 1958; Singer & Resnick, 1992).

These performance data are consistent with our proposal that
young children would succeed on proportional reasoning problems
that they solve through intuitive processes and have greater diffi-
culties with problems that invoke more explicit processes. The
response time data are consistent with this intuitive–explicit dis-
tinction, in that faster responses were associated with higher per-
formance levels than slower responses (Sloman, 1996; Stanovich,
2004). One potential limitation of this study, however, concerns
the simultaneous presentation of target and foil. This may have
enabled participants to revise their initial encoding of the target
quantity in the DC and CD conditions, because they could go back
and forth between the target and the choice alternatives. For
example, a participant in the DC condition may have initially
represented a 3⁄4 discrete target numerically (e.g., as “3 juice parts”
or “4 total”), rather than representing it proportionally (e.g., “about
3⁄4,” “more than half juice,” or “3 parts juice to 1 part water”).
Upon seeing the choice alternatives represented in a continuous
format, however, the child might have reanalyzed the target pro-
portion and re-encoded it in a proportional manner. Thus, the fact
that children performed as well in the DC and CD conditions as in
the CC condition may have stemmed from the simultaneous avail-
ability of target and foil quantities. In order to determine whether
this is the case, and to better understand at what point in the
problem-solving process discrete units disrupt performance, Study
2 adopts the design of Study 1, but modifies the procedure so that
the target and choice alternatives are presented sequentially.

Study 2

The present study divides the task into encoding and comparison
phases with sequential presentation of the target and choice alter-
natives. The crossing of continuous and discrete targets and choice
alternatives with this procedure should provide more definitive
information as to whether difficulties with discrete proportions
arise at encoding, at comparison, or during both phases. If diffi-
culties arise during encoding, then we should see low and similar
performance in the DD and DC conditions, the conditions in which
the target proportion consists of discrete units, irrespective of how
the choice alternatives are represented. Alternatively, if difficulties
arise at the comparison phase through overextension and matching
of the target and foil quantities, then we should see poor perfor-
mance only in the DD condition, because absolute numeric
matches are only possible in this condition. This would replicate
the results of Study 1 but would more precisely pinpoint the locus
of the difficulty to quantitative comparison, because the sequential
presentation precludes going back and forth between the target and
the choice alternatives. Finally, if difficulties with discrete units
arise during encoding and comparison, then performance in the
DD, DC, and CD conditions should all be lower than performance
in the CC condition. In this event, discrete units may disrupt
proportional reasoning for one or both of the following reasons:
First, children may be unable to keep from applying counting
algorithms in the presence of countable entities and this may
decrease their ability to process proportional information; second,
the presence of discrete units may decrease the child’s ability to
perceptually abstract proportional information by breaking up the
gestalts of the colored regions.

Method

Participants. Participants were 144 first- and third-graders
recruited from three of the same sites that participated in Study 1
(M1 � 7 years 1 month, 36 girls, 36 boys; M3 � 9 years 0 months,
34 girls, 38 boys; SD � 3.5 months in each grade). There were 18
participants per grade and continuity condition. Participants re-
cruited for the current study had not participated in the first study.
As in the previous study, we did not collect any ethnicity or SES
information for each individual child. Again, using reported school
data and the number of participants recruited from each school, we
estimate that 28% of participants were Hispanic, 18% were Asian,
11% were Black, and 43% were White, and that about 46% (SD �
29%) were from low SES backgrounds (based on the percentage of
students in each school who qualified for free or reduced-cost
lunch).

Procedure. The instructions given to participants prior to the
task were identical to those given to participants in Study 1. The
procedure was also largely consistent with that of Study 1; how-
ever, the targets and choice alternatives in each problem appeared
sequentially. On each trial, the participant was first shown the
target proportion. This was followed by a solid dark mask that
appeared briefly (	100 ms) and then a 5-s blank screen interval.
Immediately after this, the two choice alternatives were presented.
Participants themselves controlled how long they saw the target
proportion; that is, while the target proportion was presented, the
participant could click the mouse anywhere on the screen (with a
ceiling of 20 s) to make it disappear and initiate the mask and the
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5-s interstimulus interval . Problems were presented in random
order, as determined by the computer program.

Experimental design. The experimental design was identical
to that of Study 1. Participants were again randomly assigned to
one of four continuity conditions (CC, CD, DC, and DD). As in
Study 1, in each continuity condition the foil matched the target’s
juice part on half the trials and the target’s whole (e.g., total
juice � water quantity) on the other half.

Results

Collapsing across all variables, participants selected the propor-
tional match for the target on 63.7% of all trials. Table 4 summa-
rizes the data for each continuity condition, school grade, and foil
type. The primary analysis was a 4 � 2 � 2 � 2 mixed model
ANOVA. Continuity condition (CC, CD, DC, or DD), school
grade (first grade or third grade), and sex were between-subjects
variables, and foil type (part or whole foil) was a within-subjects
variable.

The analysis revealed a significant main effect of continuity
condition, F(3, 128) � 3.49, p � .02, �p

2 � .08. Planned pairwise
comparisons revealed that participants in the DD continuity con-
dition were significantly less likely to select the proportional
match than those in the CC, CD, and DC conditions, all ts(70) �
1.70, ps � .05. There were no significant differences in perfor-
mance between the CC, CD, and DC conditions (all ps � .41).
Comparisons against chance revealed that participants in the CC,
CD, and DC conditions selected the proportional match at a rate
that exceeded chance, all ts(35) � 3.71, all ps � .001, whereas
those in the DD condition did not, t(35) � 1.26, p � .22. The
analysis also revealed a main effect of school grade, F(1, 128) �
21.84, p � .001, �p

2 � .15, with third-graders selecting the pro-
portional match more frequently than first-graders (71.3% vs.
56.1% of trials). On average, both first-graders and third-graders
selected the proportional match more frequently than expected by
chance, t(71) � 2.81, p � .006, and t(71) � 7.49, p � .001,
respectively. The main effect of sex was not significant, F(1,
128) � 1.60, p � .21, �p

2 � .01; however, there was an unexpected
statistically significant Sex � Continuity condition interaction,
F(3, 128) � 5.11, p � .002, �p

2 � .11, which was due to girls, but

not boys, performing better in the CC, CD, and DC conditions than
the DD condition, all ts(16) � 3.22, ps � .002, Sidak adjusted.
Girls selected the proportional match on 75%, 72%, 71%, and 46%
of trials for the CC, CD, DC, and DD conditions, respectively, and
boys selected the proportional match on 60%, 65%, 58%, and 64%
of trials for the CC, CD, DC, and DD conditions, respectively (this
also resulted in a significant difference between boys and girls in
the CC and DD conditions, both ps � .035, Sidak adjusted).
Finally, the ANOVA revealed a main effect of foil type, F(1,
128) � 4.12, p � .04, �p

2 � .03, with better performance when the
foil alternative matched the target’s juice � water whole than
when it matched the target’s colored juice part (65.9% vs. 61.4%).

As in Study 1, individual analyses mirrored the findings in the
group analyses. The number of participants who consistently se-
lected the proportional match increased with age (13% of first-
graders and 50% of third-graders exceeded chance), and more
participants in the CC, CD, and DC conditions (39%, 33%, and
33%, respectively) consistently selected the proportional match
than in the DD condition (19%). Conversely, 3 of 36 participants
(8%) in the DD condition consistently selected the absolute foil
alternative, whereas only 1 of 108 participants (1%) in the other
three conditions combined did so.

On average, participants took 9.1 s to encode the target propor-
tion (SD � 5.6) and took 6.9 s to choose once the choice alterna-
tives appeared (SD � 5.6). As in Study 1, accuracy and timing
were negatively correlated, which was true both for encoding time
and accuracy (r � �.21, p � .012) and for choice time and
accuracy (r � �.16, p � .064). A 4 � 2 � 2 � 2 � 2 mixed model
ANOVA was conducted to analyze the effects of continuity con-
dition (CC, CD, DC, and DD), school grade (first and third
grades), sex, foil type (part foils and whole foils), and process
(encoding and choice), with median times as the dependent vari-
able. There was a main effect of continuity condition, F(3, 128) �
3.75, p � .01, �p

2 � .08. Participants in the CC condition (M � 5.8)
were significantly faster than those in the DD condition (M � 7.8,
p � .007, Sidak adjusted), but neither significantly differed from
those in the CD and DC conditions (MCD � 6.9 and MDC � 6.8).
As in Study 1, these results show problem solving times that are
generally consistent with performance, rather than reflecting a
speed-accuracy trade-off. Although not of central theoretical in-
terest, there was also a main effect of process, F(1, 128) � 80.74,
p � .001, �p

2 � .39, with participants taking significantly longer to
encode the target proportion than to select a choice alternative. The
main effects for foil-type, school grade, and sex were not signif-
icant (F � 1.20, p � .28). Finally, there was a significant three-
way Process � Condition � School Grade interaction, F(3,
128) � 3.57, p � .02, �p

2 � .08. Pairwise comparisons suggest this
was due to first-graders in the CC condition encoding the target
proportion faster than first-graders in the DD and DC conditions
( ps � .04, Sidak adjusted), with no other significant pairwise
differences.

Discussion

Consistent with Study 1, the results of Study 2 revealed that as
early as first grade (i.e., at about 6 or 7 years of age) children can
successfully solve proportional equivalence problems when the
target proportion, the choice alternative proportions, or both are
represented with continuous quantities. They failed to solve oth-

Table 4
Study 2: Mean Proportion of Trials on Which Participants
Selected the Proportional Match, by Continuity Condition,
Grade, and Foil Type

School grade

Continuity condition

CC CD DC DD Total

First grade
Whole foils .63 .68 .53 .46 .58
Part foils .54 .58 .56 .51 .55

Third grade
Whole foils .81 .80 .72 .64 .74
Part foils .72 .67 .75 .58 .68

Total .68 .68 .64 .55 .64

Note. CC � continuous target–continuous choice; CD � continuous
target–discrete choice; DC � discrete target–continuous choice; DD �
discrete target–discrete choice.
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erwise parallel problems, however, when the target and choice
proportions were both represented with discrete quantities. The
finding that performance levels in the DC and CD conditions were
significantly better than in the DD condition and not significantly
different from performance in the CC condition indicates that the
mere presence of discrete units does not disrupt proportional
reasoning. The combination of above-chance performance in the
DC condition and chance performance in the DD condition is
particularly telling. This pattern suggests that children can cor-
rectly encode the target’s proportion when a quantity is made up of
discrete units (as indicated by performance in the DC condition),
but that when numerical unit information is available at both target
encoding and choice alternative comparison (as in the DD condi-
tion), the possibility of a numerical match, particularly a match to
the highly salient juice parts, detracts from making a proportional
match.

The significant interaction between continuity condition and sex
was unexpected. Consistent with the performance patterns of
Study 1, girls performed more poorly in the DD condition than in
the other three conditions, but in contrast to the findings in Study
1, boys’ performance did not differ significantly across conditions.
Furthermore, girls exhibited stronger performance than boys in the
CC condition, and boys exhibited stronger performance than girls
in the DD condition. This crossover interaction suggests that
sequential presentation may decrease the propensity of boys to
make a numerical match in the DD condition more than it does for
girls, and raises the possibility that there may be a sex-based
divergence between intuitive and more explicit proportional rea-
soning capacities. However, because the Sex � Condition inter-
action was unique to Study 2 (this effect did not approach signif-
icance in Study 1), it must be interpreted with caution.

General Discussion

The current studies extend our understanding of the develop-
ment of proportional reasoning and illuminate some of the reasons
why children have difficulty solving proportional equivalence
problems involving discrete quantities compared to problems in-
volving continuous amounts (Jeong et al., 2007; Sophian, 2000;
Spinillo & Bryant, 1999). Specifically, our continuity condition
manipulation revealed that children are able to solve proportional
equivalence problems when the target, the choice alternatives, or
both are represented by continuous amounts several years before
they are able to solve parallel problems in which both the target
and the choice proportions are represented by discrete units. This
pattern of findings suggests that children’s difficulties stem at least
partly from their propensity to compare quantities on the basis of
the number of elements in the target quantity rather than on the
basis of proportional relations. In Studies 1 and 2, performance in
the DD condition, which is the only condition where absolute
numeric matches were possible, was significantly worse than in the
other conditions. That participants in both studies had more suc-
cess in solving proportional problems when the target was repre-
sented with discrete units and the choice alternatives were repre-
sented with continuous amounts (the DC condition) or vice versa
(the CD condition) suggests that they are not simply misrepresent-
ing proportional information whenever discrete, countable units
are involved. Rather, the finding that performance was at chance
only in the discrete-target, discrete-choice alternatives condition

indicates that children’s difficulties reflects a tendency to match
the number of units in the target and choice alternatives when this
is possible.

In both studies there was also an effect of foil type, such that
performance was lower when the foil matched the target’s colored
juice part than when it matched its juice � water whole. This
indicates that a common absolute part quantity between the target
and foil is particularly attractive. This effect did not interact with
continuity condition, which suggests that it is robust and occurs
even when continuous quantities are involved and children are
representing proportional information. As mentioned, this finding
is consistent with previous results showing that young children
have a tendency to focus on the parts of a proportion (Inhelder &
Piaget, 1958; Singer & Resnick, 1992). This does not necessarily
mean that children are unable to code part–whole relationships but
rather that parts may be more salient to them than wholes. It should
be noted that the types of foils used in the current study were not
exhaustive. For example, the foils could have involved a match to
the target proportion’s water part. We reasoned that the colored
juice part of each proportion, which varied from trial to trial, was
more perceptually salient than the water portion of each propor-
tion, which remained constant in color, and therefore the juice part
was more likely to provide participants with an attractive, albeit
erroneous, choice alternative. We expect that equivalent target and
foil alternative water parts might draw some participants to the
foil, because such a foil would provide another sort of numerical
match, but this effect might be less dramatic than we see for juice
part foils. Further, our current findings do not provide information
as to whether the potency of the numerical foil would vary de-
pending on whether it was shown in the lower or upper portion of
the stimulus column or whether the water and juice parts were
randomly interspersed (e.g., Jeong et al., 2007), as the juice part
was always shown cohesively in the lower part of each proportion
column.

Also of note is our use of a rather minimalistic approach to
discretizing the presented elements; that is, although demarcated in
a way that makes them countable, our discrete representational
format does not actually involve independent entities with inter-
item distances. In the present studies, our intent was to make the
continuous and discrete representational formats as comparable as
possible; therefore, we elected to use the described, perhaps less
dramatic, demarcated columns for discrete trials. Basically, we
conceptualized our continuous stimuli as existing in an undiffer-
entiated cylinder and our discrete stimuli as existing in something
along the lines of a graduated cylinder. It is possible that indepen-
dent discrete units, which participants might be even more likely to
explicitly count, would heighten the effects we obtained with
demarcated columns and would lead to even worse proportional
reasoning performance.

Our results show that children are able to reason about propor-
tionality at earlier ages than Piaget and Inhelder’s (1951/1975;
Inhelder & Piaget, 1958) classic studies indicated. That is, if the
problem involves at least one proportion consisting of continuous
amounts, which effectively prevents children from making
matches on the basis of number, they demonstrate an ability to
reason about proportional equivalence earlier—by about first
grade (i.e., between 6 and 8 years of age). At the same time,
however, our results are consistent with Piaget and Inhelder’s
findings that children have marked difficulty with problems rep-
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resented entirely with discrete units for which there is the possi-
bility of a numerical match to the target. That is, participants in the
DD condition were at chance levels of performance and in fact
tended to select the absolute numeric match slightly more often
than the proportional match until fourth grade (i.e., about 10 years
of age). If continuous amounts are conceptualized as eliciting
intuitive problem-solving processes and problems with discrete
targets and choice alternatives are conceptualized as eliciting more
explicit problem solving processes, our results can be viewed as
consistent with the Piagetian perspective. That is, Piaget and
Inhelder (1951/1975) acknowledged the possibility of intuitive
problem-solving by young children, but did not consider this to
reflect true understanding of probability and proportionality. Thus,
differing views about the developmental course of proportional
understanding may hinge on what constitutes evidence of under-
standing. Current views, which characterize the development of
mathematical understanding as moving from partial to more com-
plete and from more to less contextually dependent, rather than as
nonexistent until a point in development when a certain kind of
problem is solved correctly, are helpful in making sense of seem-
ingly disparate findings (e.g., Mix, 2002; Mix et al., 2002).

Related to the issue of graded and contextually dependent de-
velopment, the individual analyses we conducted revealed that
children tend to use a variety of strategies to solve the problems.
Relatively few participants, particularly younger participants, se-
lected either option (i.e., the proportional match or the absolute
numerical foil) at a rate that exceeded chance, which suggests that
most children were not consistently using a specific strategy across
problems. As suggested by Siegler (1996, 2005), in the context of
studying children’s solutions to numerical calculations, this vari-
ability may be an important engine for learning and development.
A microgenetic study that probes children’s explanations for their
solutions to proportional reasoning problems could provide more
information about their strategies and thus shed light on whether
variable solution strategies are related to learning trajectories for
this kind of problem. There may, however, be an inherent diffi-
culty in doing this; specifically, intuitive reasoning processes are
by definition less open to scrutiny than more explicit processes,
and although children may be able to verbalize the explicit pro-
cesses they engage in (e.g., counting the discrete units—
anecdotally, this strategy was used by numerous participants in the
current study), they may have difficulty verbally explaining the
intuitive strategies they use (Siegler, 2000). Furthermore, request-
ing participants to verbalize how they solved a given problem may
actually affect the sort of processes they use to solve that problem
or subsequent problems.

Another contribution of the present studies to the cognitive
development literature is the identification of a perceptual manip-
ulation—continuous versus discrete representation—that drives
engagement of intuitive and more explicit problem solving pro-
cesses. Others have noted the role of perceptual manipulations on
children’s numerical processing skills. For example, Mix (1999,
2008) demonstrated that 3- to 4-year-olds are more likely to select
a choice alternative that is numerically equivalent to a target if the
target and choice arrays have similar surface features. Mix (2008)
suggests that this occurs through alignment processes and that
highly similar item sets invite more thorough comparison pro-
cesses than less similar item sets, resulting in more frequent
numerical matching. This raises the possibility that young partic-

ipants in our study may have been particularly drawn to making
numerical target–foil matches in the DD condition by the surface
feature similarity between the two (e.g., three yellow target units
could be matched with three yellow foil units). It is possible that
if there had been variation between the color of the target and the
choice alternatives’ juice parts, the incorrect numerical match
would have been less attractive and proportional matching would
have been even better.

Our finding of early intuitive proportional reasoning in the
context of continuous amounts is also consistent with results
showing sensitivity to proportional relations in young children and
infants. For example, several studies show that very young chil-
dren are able to encode the length of a target object relative to a
comparison standard at a point in development when they are
unable to encode the length of the target object in the absence of
a comparison standard, a finding that implicates proportional rea-
soning strategies (e.g., Baillargeon, 1991; Duffy, Huttenlocher, &
Levine, 2005; Huttenlocher, Duffy, & Levine, 2002). Further,
McCrink and Wynn (2007) report that 6-month-old infants are
sensitive to the ratio captured by arrays of two categories of units
(i.e., relatively larger Pac-Man figures and smaller pellet objects),
as long as the ratio is sufficiently large (i.e., a 2:1 ratio). This
finding may seem somewhat inconsistent with our results, as the
units incorporated into each of McCrink and Wynn’s ratios were
discrete; however, the number of objects in the sets that were
presented was quite high (i.e., ranging from 12 to 60 total units
presented at once). In light of our findings, it is possible that
infants’ sensitivity to the ratios may actually be linked to their
inability to exactly enumerate the set of objects shown and to the
engagement of an approximate, analogue magnitude system (Fei-
genson, Dehaene, & Spelke, 2004). This raises the somewhat
counterintuitive hypothesis that given a task like the one used in
the present studies, children younger than those tested here, who
have not yet developed mature counting skills, might be able to
make proportional matches irrespective of the stimulus format
(i.e., continuous vs. discrete), perhaps out-performing older chil-
dren who erroneously make numeric matches on discrete–discrete
problems. Conversely, elementary-school-age children may per-
form better on proportional reasoning tasks if the number of units
to be counted is increased to a point that eliminates counting and
matching as a feasible problem-solving strategy. In this sense,
understanding of number and the ease or ability to count sets of
items is the very thing that negatively impacts elementary-school-
age children’s success in solving proportional equivalence prob-
lems. A similar argument is made by Thompson and Opfer (in press),
who suggest that the beneficial development of a linear numerical
representation is associated with the cost of losing access to a frac-
tional power function representation. In their studies, higher accuracy
in a number line estimation task was associated with lower accuracy
in a fraction line estimation task. These findings are similar to the
present results and suggest that an interesting future direction may be
to more specifically analyze the relation between performance on the
sort of proportional reasoning task used here and performance on
problems assessing arithmetical skills.

The current results have implications for efforts to increase
children’s understanding of fractions and proportions (e.g., Ball,
1993; Empson, 1999; Pitkethly & Hunting, 1996; Sophian et al.,
1997; Streefland, 1993). The main effect of school grade, coupled
with a nonsignificant interaction between school grade and conti-
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nuity condition, shows that there are significant improvements in
proportional reasoning with age, even when conditions are favor-
able for representing proportional information (i.e., when at least
one of the proportions in the problem is represented with contin-
uous quantities and foils are on the opposite side of the half
boundary). This may reflect the impact of school curricula, as
fraction and rational number operations are increasingly empha-
sized at higher elementary grade levels. In the particular schools
attended by children in our studies, fractions and rational number
operations are introduced in third grade and are given increasing
emphasis in fourth grade and in subsequent grade levels. Further-
more, the improvement demonstrated across grades, and particu-
larly in the DD condition, may reflect the knowledge they were
gaining in school. It would be interesting to further examine the
effect of instruction on fraction problem solving on proportional
reasoning processes, perhaps by tying this instructional effort to
the intuitive proportional reasoning that young children in our
studies demonstrate. This sort of instructional strategy could make
use of children’s success on proportional problems involving con-
tinuous amounts to scaffold their performance on proportional
problems involving discrete sets. Drawing parallels between the
two kinds of problems may increase the likelihood that children
will apply correct intuitive processes, rather than erroneous count-
ing strategies, to proportional problems involving discrete sets.
Relating instruction to children’s intuitive knowledge is an ap-
proach that is widely advocated by educational researchers (e.g.,
Fischbein, 1987) and by those specifically interested in improving
children’s proportional reasoning and fraction understanding (e.g.,
Ahl et al., 1992; Fuson & Abrahamson, 2005; Pitkethly & Hunt-
ing, 1996).

In conclusion, the present findings indicate that children’s pro-
portional reasoning abilities vary as a function of the structure of
the representations they are given. When absolute numerical
matches are not possible, even 6- and 7-year-olds demonstrate
proportional reasoning abilities. Conversely, when absolute nu-
merical matches are possible, even 8- and 9-year-olds have diffi-
culty reasoning proportionally. Our results suggest that young
children go wrong in reasoning about proportions when the knowl-
edge they have acquired about counting to compare set sizes gets
in the way of their intuitive, relative visual comparison, propor-
tional reasoning processes.
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Appendix

Task Instructions Script

The participant is shown a photo of a teddy bear on the com-
puter screen, and is told:

His name is Wally-bear, and Wally-bear really, really likes drinking
juice.

The participant is prompted to click a button on the screen, and
upon doing so, the character photo changes so that he appears to be
holding a glass of orange juice.

See, he has a glass of orange juice. Wally-bear loves orange juice, but
he also loves all other kinds of juice—he loves red juice, blue juice,
green juice, yellow juice, and purple juice—all kinds of juice. Wally-
bear loves juice so much that sometimes he likes to mix his juice
himself, but he needs to be really careful when he’s mixing his juice,
so he has just enough juice and just enough water, so that it tastes just
right! Let me show you.

The participant is again prompted to click the screen button, and
a column depicting two (or three) orange “juice” units, and two (or
three) light blue “water” units appears below the character (always
resulting in a one-to-one juice-to-water ratio). Note that the pro-
gram randomly determines whether the participant is shown two or
three initial juice and water units. Also, as in the task itself, in the
conditions where the target was continuous, the initial column’s
juice and water parts are continuous, with visible division only
occurring where the two meet.

See, when he was mixing this glass of orange juice [pointing to the
glass the character appears to be holding], Wally needed just the right
amount of orange [gesturing to the orange portion of the column], and
he needed just the right amount of water [gesturing to the light blue
portion of the column], so that when he mixed them up [gesturing with
a circular motion around the entire column], it would taste just right.

Let me show you what would happen if Wally wanted more [less]
juice.

The participant re-presses the button, and a second column also
composed of juice and water parts appears. The second column is
proportionally equivalent to the initial column, but is more (or less)
an absolute amount:

See, if Wally wanted more [less] juice, he would need to mix more
[less] orange [pointing to the orange portion of the secondary column
and gesturing back and forth between the initial and secondary orange
amounts], and he would need more [less] water [pointing to the light
blue portion of the secondary column and gesturing back and forth
between the initial and secondary water amounts], so that when he
mixes his juice [gesturing with a circular motion around the entire
secondary column], it would still taste just right [gesturing with a
circular motion around the entire initial column], just like it is sup-
posed to [with a point to the glass of juice the character appears to be
holding].

Finally, the participant is prompted to click the button again, the
juice mix columns disappear, and the experimenter says:

Now I have a question for you. You see, Wally knows how to mix his
juice, and he knows what the different kinds of juice are supposed to
taste like, but sometimes he gets a little confused, and he doesn’t know
how much juice and how much water he needs to mix for his different
kinds of juice. Do you think you could help him by picking out the
right mixes for his different kinds of juice? Do you think you can pick
out the right mixes so that Wally’s juice tastes just right?
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